dsd
$
\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align*}
$
Saturday, February 27, 2010 | 1 Comments
Basic Latex 4
\begin{document}
\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align*}
\end{document}
$
\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align*}
$
\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align*}
$
Friday, February 26, 2010 | 0 Comments
Basic Latex 3
$\int_{0}^{1}\frac{x^{4}\left(1-x\right)^{4}}{1+x^{2}}dx=\frac{22}{7}-\pi$
${ x + a = a + x = x}$
$$
\frac{x^n-1}{x-1} = \sum_{k=0}^{n-1}x^k
$$
$$
\frac{a/b-c/d}{e/f-g/h}
$$
$\frac{1}{2}$
$\frac{2}{x+2}$
\documentclass{article}
\begin{document}
%You won't see this in the final document.
You do see this.
\end{document}
Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$.
$
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
$
$\frac {x^2+5}{3x +1}$
$$
\sum_{k=0}^\infty\frac{(-1)^k}{k+1} = \int_0^1\frac{dx}{1+x}
$$
$$
50 apples \times 100 apples = lots of apples
$$
\begin{eqnarray*}
1+2+\ldots+n&=&\frac{1}{2}((1+2+\ldots+n)+(n+\ldots+2+1))\\
&=&\frac{1}{2}\underbrace{(n+1)+(n+1)+\ldots+(n+1)}_{\mbox{$n$copies}}\\
&=&\frac{n(n+1)}{2}\\
\end{eqnarray*}
\begin{document}
\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align*}
\end{document}
$
\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align*}
$
----------------
$\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align*}$
Friday, February 26, 2010 | 0 Comments
Basic Latex 2
$a$
$f(x) = 3x + 7$
f(x) = 3x + 7
Let $f$ be the function defined by $f(x) = 3x + 7$, and
let $a$ be a positive real number.
http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/MathMode.html
$a/b$
$\sqrt[3]{x+y}$
\frac{num}{den}
$\frac{1}{2}$
$a + b= c$
$\frac{w+a}{d+3}=\frac{r}{t}$
$\cos^2 x +\sin^2 x = 1$
\[\LaTeX\]
\frac{1}{2}
Friday, February 26, 2010 | 0 Comments
Basic Latex 1
The solution to \[\sqrt{x} = 5\] is \[x=25.\]
The solution to
\[\sqrt{x} = 5\]
is
\[x=25.\]
$frac{x+y}{y-z)$
http://www.forkosh.dreamhost.com/source_mathtex.html
http://www.public.asu.edu/~rjansen/latexdoc/ltx-2.html
http://texblog.net/latex-archive/maths/eqnarray-align-environment/
http://andy-roberts.net/misc/latex/latextutorial10.html
http://andy-roberts.net/misc/latex/latextutorial9.html
Friday, February 26, 2010 | 0 Comments
test 1
nie jawapan saya
http://arawna.blogspot.com/2009/07/cara-buat-spoiler-di-blogspot.html
$5y$
$a/b$
becomes
$a/b$
Sunday, January 31, 2010 | 1 Comments
http://arawna.blogspot.com/2009/07/cara-buat-spoiler-di-blogspot.html
$5r+3$
Sunday, January 31, 2010 | 1 Comments
Try 4
[spoiler][math]\int_a^bf(x)\,dx[/math] Oh dear![/spoiler]
[spoiler]$\int_a^bf(x)\,dx$ Oh dear![/spoiler]
Sunday, January 31, 2010 | 0 Comments
Try 4
[spoiler][math]\int_a^bf(x)\,dx[/math] Oh dear![/spoiler]
[spoiler]$\int_a^bf(x)\,dx$ Oh dear![/spoiler]
Sunday, January 31, 2010 | 1 Comments
Try 4
[spoiler]$\int_a^bf(x)\,dx $ Oh dear![/spoiler]
Sunday, January 31, 2010 | 0 Comments
Try 2
$Latex$
$TheSolutionof$
The solution to \[\sqrt{x} = 5\] is \[x=25.\]
Evaluate the sum $\displaystyle\sum_{i=0}^n i^3$.
2x^2 + 3(x-1)(x-2)&=&2x^2 + 3(x^2-3x+2)\\
&=& 2x^2 + 3x^2 - 9x + 6\\
&=& 5x^2 - 9x + 6
\documentclass{article}
\begin{document}
\begin{eqnarray*}
2x^2 + 3(x-1)(x-2)&=&2x^2 + 3(x^2-3x+2)\\
&=& 2x^2 + 3x^2 - 9x + 6\\
&=& 5x^2 - 9x + 6
\end{eqnarray*}
\end{document}
$\mathbf{\left(x-1\right)\left(x+3\right) }$
$$
\int_0^{2\pi}\cos(mx)\,dx = 0 \hspace{1cm}
\mbox{if and only if} \hspace{1cm} m\ne 0
$$
http://frodo.elon.edu/tutorial/tutorial/node25.html
\text {The solution to}\: \sqrt{x} = 5 \: \: \text {is} \: \: \, x = 25
$\text {The solution to}\: \sqrt{x} = 5 \: \: \text {is} \: \: \, x = 25$
http://www.mathhelpforum.com/math-help/latex-help/126399-how-make-sentence-spacing.html
$\[ \cos(\theta + \phi) = \cos \theta \cos \phi
- \sin \theta \sin \phi \]$
http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/StdFuncts.html
Sunday, January 31, 2010 | 1 Comments
Try 1
[math]
1+1 = 4/2
[/math]
$\(a + b = c\)$
$(a + b = c)$
\int_{0}^{1}\frac{x^{4}\left(1-x\right)^{4}}{1+x^{2}}dx=\frac{22}{7}-\pi
$\int_{0}^{1}\frac{x^{4}\left(1-x\right)^{4}}{1+x^{2}}dx=\frac{22}{7}-\pi$
$\frac{1}{2}mv^2$
$\(A = \pi r^{2}\)$
$(a) \(A = \pi r^{2}\)$
$(a)\(A = \pi r^{2}\)$
a) $\(A = \pi r^{2}\)$
$\color{blue}95800^4 + 217519^4 + 414560^4 = 422481^4$
The solution to $\sqrt{x} = 5$ is $x=25$.
$The solution to$ $\sqrt{x} = 5$ is $x=25$.
$The solution to $\sqrt{x} = 5$ is $x=25$.
$The solution to \sqrt{x} = 5 is x=25$.
Sunday, January 31, 2010 | 0 Comments
Latex Part 1-Square Roots
Ref: http://www.artofproblemsolving.com/LaTeX/AoPS_L_BasicMath.php
\documentclass{article}
\begin{document}
The solution to $\sqrt{x} = 5$ is $x=25$.
\end{document}
$(a) sqrt{25}=5$
(a) $sqrt{25}=5$
\sqrt[root]{25}
$\sqrt[3]{x+y}$ ----http://www.personal.ceu.hu/tex/math.htm
$\sqrt[root]{25}$
$\sqrt[2]{25}$
$\sqrt[]{25}$
$\sqrt[]{25}=5$
http://www.andy-roberts.net/misc/latex/latextutorial9.html
\frac{x+y}{y-z}
$\frac{x+y}{y-z}$
$frac{x+y}{y-z}$
$$(\frac{x^2}{y^3})$$
[ math] ...... [ /math]
[ math] 2+1 [ /math]
$2+1$
[math]
1+1 = 4/2
[/math]
Saturday, January 30, 2010 | 0 Comments
Latex Code Inside Two Dollar Signs
(a)\y=1-x^2\
(b) lupa
hasil daripada rujukan @
Ref: http://watchmath.com/vlog/?p=1244
Section of Ref : Usage
Quote Section :

baru jumpa 'key. dia camamner nak buat..patutla
@ http://mymaths.blogspot.com/2008/07/using-latex-in-blogger.html
watchmath said...
Hi, I have another solution to write latex on Blogger. It is based on mathtex.
It can write latex symbol by just putting latex code inside two dollar signs.
Check out my article here: http://watchmath.com/vlog/?p=438
10 July 2009 20:32

Saturday, January 30, 2010 | 0 Comments
Get Ans Here